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Full-Speed Testing of A/D Converters
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Abstract — High-precision analog-to-digital converters (ADC’S) are

sought for digital audio and instrumentation and high-speed converters for

video applications. Improved methods of converter testing at full speed are

needed. This paper describes improved computer-aided ADC characteriza-

tion methods based on the code density test and spectraf analysis using the

fast Fourier transform (FFT). The code density test produces a histogram

of the digital output codes of an ADC sampling a known input. The code

density can be interpreted to compute the differential and integral nonlin-

earities, gain error, offset error, and internal noise. Conversion-rate and

frequency-dependent behavior can also be measured.

I. INTRODUCTION

T HIS paper describes improved computer-based meth-

ods of testing high-precision and high-speed analog-

to-digital converters (ADC’S) at full speed with full-range

dynamic inputs.

A known periodic input is converted by an ADC under

test at sampling times that are asynchronous relative to the

input signal. The relative number of occurrences of the

distinct digital output codes is termed the code density.

These data are viewed in the form of a normalized histo-

gram showing the frequency of occurrence of each code

from zero to full scale. The code density data are used to

compute all bit transition levels. Linearity, gain, and offset

errors are readily calculated from a knowledge of the

transition levels. This provides a complete characterization

of the ADC in the amplitude domain. The precision of this

measurement may be extended without limit by taking

additional data.

Output samples from an ADC also may be processed

with a fast Fourier transform (FFT) algorithm to define

the linearity and noise properties of the ADC in the

frequency domain. This is analogous to the use of analog

spectrum analysis to test digital-to-analog (D/A) con-

verters.

For an ideal ADC, the code density is independent of

conversion rate and input frequency. The characteristics of

practical ADC’S (with their associated sample/hold cir-

cuits) can be exhaustively tested by varying both the sam-

pling frequency and input frequency. Overall frequency
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response can be evaluated using the code density test for

several input frequencies.

In high-precision converters ( > 12 bits), noise is a major

concern. The statistical nature of the code density test gives

a more accurate characterization of converter noise com-

pared to conventional tests in which each output code is

attained only once. Noise amplitude can be computed in

rms, peak, or spectral (from FFT) form.

Traditional tests use a digital voltmeter (DVM) to attain

high measurement accuracy, but the tests are done with a

static or slowly varying input signal. A dynamic input can

be created using a digital-to-analog converter (DAC), but it

is difficult to separate the errors of the DAC and ADC.

Furthermore, resolution is limited; testing a 16 bit ADC

with an 18 bit DAC (if it exists) only yields 1/4 bit

precision in the ADC test.

II. CODE DENSITY TEST THEORY

The histogram or output code density is the number of

times every individual code has occurred. The first observa-

tion is that an output code density or histogram bin equal

to O is a missing code. A shift in the density is an offset

error. A change in slope of the ADC transfer curve causes

a gain error that may be found by comparison to external

amplitude measurements.

For an ideal ADC with a full scale ramp input and

random sampling, an equal number of codes is expected in

each bin. Differential nonlinearity is the deviation from

one least significant (LSB) of the range of input voltages

that give the same output code. The number of counts in

the ith bin H(i) divided by the total number of samples N,

is the width of the bin as a fraction of full scale. The ratio

of bin width to the ideal bin width P(i) is the differential

linearity and should be unity. Subtracting one LSB gives

the differential nonlinearity in LSB’S [1]:

M(i)/Nt _l.
DN(i) =

P(i)
(2.1)

Integral nonlinearity is the deviation of the transfer

curve from ideality. By compiling a cumulative histogram,

the cumulative bin widths are the transition levels. Once

the transitions are known, the ADC is characterized.

Overall noise is measured by grounding the ADC input

and accumulating a histogram. Only the bin for zero input

should have counts in it. Any other counts are caused by

noise in the ADC.
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By increasing the ADC conversion rate and comparing This is the probability that a code will be in bin [i] for an

the desired properties such as linearity, the maximum input sine wave of amplitude A.

conversion rate for a desired accuracy can be determined. If the input has a dc offset, it is of the form xc,+

Similarly, varying the input test frequency is a frequency A sin d with density

response measurement, a true dynamic test of the ADC. If

an external sample-and-hold is used with the ADC, it is P(v)=
also being tested as part of the whole system.

+ “ ““)‘R A –(v–vo)

A. Choice of Input Waveform

At first glance, the choice for an input would be a ramp

or triangle wave. An equal number of samples per bin is

expected, except for the first and last bins which would

accumulate all counts for inputs outside the converter’s

range.

The fundamental drawback to this is the distortion or

nonlinearity in the ramp. For a differential nonlinearity

test, a 1 percent change in the slope of the ramp would

change the expected number of, codes by 1 percent. But

these errors would quickly accumulate and make the in-

tegral nonlinearity test unfeasible. Brief consideration

makes it clear that the input source must be known with

better precision than the converter being tested.

A random voltage with an equal likelihood of all volt-

ages over a range is desired. Notice that this is not “white

noise” which is equal amplitudes at all frequencies. A

possible way to generate such a signal is to generate a

pseudorandom digital sequence and then use an analog

low-pass filter to generate the “random” voltage [2]. The

drawback to this method is that the digital sequence must

not change amplitude and the filter must be ideal so as not

to introduce distortion.

We have used a sine wave signal source. It is precisely

known mathematically, and commercial ultralow distortion

oscillators have total harmonic distortion < – 95 dB. This

can be confirmed by a spectral analysis. It is much harder

to measure the linearity of a ramp to a comparable level of

accuracy.

1) Sine Wave Probability Density: The probability den-

sity p(V) for a function of the form A sin at is

‘(V)=AA” (2.2)

Integrating this density with respect to voltage gives the

distribution function P(V=, V~):

The new distribution is just shifted by V. as expected from

the shifted histogram.

1(“-P=’l-sin-r=vP(V~, V5) = ; sm

(2.6)

The discrete distribution becomes

{ [(l._l
P(i, A, VO)=; sm

2i –2” ‘1–2V~ K-f

2n )-1A

[(

Zi–zn –3–2v0 vref
–sin–l

2n )-I)A“

(2!.7)

B. Frequency of Input Waveform

The foundation of the testis that a sine wave is sampled

randomly. Sampling at random by its strict definition

would be impossible. What must be done is to assure that

the sine wave input is not sampled repetitively at the same

level. By choosing the sample frequency to be nonharmoni-

cally related to the sine wave frequency, we are assured of

this. Any jitter in the sample timing or drift in the oscilla-

tor frequency will just tend to randomize the sampling.

The effect of sampling at a frequency harmonically

related to the input would be n bins with huge positive

differential nonlinearity where n is the ratio of sample to

input frequency. This can be easily distinguished from

differential nonlinearity by varying either the sample or

input frequency since differential nonlinearity is indepen-

dent of frequency.

For a high-speed converter, the conversion rate lmay

exceed the rate at which a computer can assemble the

histogram. It is permissible to use very second or nth

sample and throw the extras away. Since the samples are

taken at random, it does not matter if the first M samples

are used or if M out of N samples are chosen.

1(”-f+sin-fw
P(V., V~) =; sm (2.3) C. Number of Samples Needed

This is the probability of a sample being in the range V= to
To find the minimum number of samples needed for

Vb.
estimating the differential nonlinearity, a 100(1 – a) per-

For an ADC, let Vb– Va= 1 bit and convert the continu-
cent confidence interval of the form (p – 2./20, P – Z,,,@)

ous probability distribution to a discrete distribution:
is set up. This says that the measured differential nol nlin-

earity lies in the range (p – Z.,2U, p + Za,2u) with 1OO(1 –

( [(

a) percent probability y. a is chosen for the desired confi-
P(i, A) =; sin-l

2i–2” –1 V,.f)-1 dence level. Z.,2U is the precision to which the measured

value differs from the true value p. The derivation of c~and

‘sin-’[(2i-~-3)~]) ’24) cariedoutintheAppendix.

the subsequent minimum number of samples needed is
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Fig. 1. Experimental setup for testing an ADC with the code density
test or FFT test.

The minimum number of samples N, needed for~ bit

precision and 100(1 – a) percent confidence is given by

(2.8) where 2.,, can be found in a table of the standard
normal distribution function:

(2.8)

To know the differential nonlinearity for an 8 bit converter

to within 0.10 bit with 99 percent confidence, 268000

samples are needed. In the 12 bit case, for 99 percent

confidence and 0.10 bit precision, 4.2 million samples are

needed.

III. HARDWARE FOR A/D CONVERTER TESTING

The experimental setup shown in Fig. 1 consists of the

input source, ADC system under test, a parallel interface

to an LSI-11 minicomputer, and a VAX 11-750. The ADC

system consists of the ADC, a sample-and-hold if needed,

voltage references, and control circuitry.

Parallel data from the ADC are latched and buffered on

the interface board before being read by the LSI-11 through

a parallel 1/0 port. The LSI-11 was used to accumulate

the data since it had a parallel input port and 64K of 16 bit

memory, enough to test a 16 bit ADC, and was available

with the Speechlab [3] program for digital 1/0, as well as

communication with a VAX 11-750 running UNIX.

Any computer can be used to compile the histogram

provided it has enough n-bit memory for 2“ bins and the

1/0 histogram program. Depending on the time needed to

compute the ADC transitions and the availability of a

high-level language, the characterization could be com-

puted on the same machine. In our work, once a histogram

is completed, it is written to a UNIX file on a VAX 11-750

where the nonlinearity computations are carried out.

IV. SOFTWARE FOR A/D CONVERTER TESTING

The software is used in two stages. Speechlab is used to

take the histogram and JADE to ~ompute the ADC errors.

Speechlab is a general-purpose program written in C for an

LSI-11 to do analog 1/0 via an ADC and DAC, as well as

digital 1/0 through a DRV-11 parallel 1/0 board.

A modified version of Speechlab is used to gather data

to test ADC’S. Originally input data were stored sequen-

L I

4
p.,,

I

PREAD ADC-I

{

REAO ADC INTO (

N+ I—--N N IS No OF SAMPLES TAKEN

9H[’1+’-H[’I
[USE , AS A POINTER TO

t

BIN INCREMENT CONTENTS

OF BIN H[!]

*

NO N = MAX?

YES

@] @%%wR50
Fig. 2. Flowchart for histogram accumulating program running on the

LSI-11.

tially in memory so only 64K samples could be taken. This

is barely enough for testing an 8 bit ADC. The main

modification was to use the digital code as a pointer to a

memory location used as a counter as shown in Fig. 2.

Incrementing that counter each time it is accessed forms

the histogram.

A future improvement will be to write the data input

and histogram routine in Assembly language rather than C

to improve upon the 9 kHz data input rate by approxi-

mately a factor of 2.

Program JADE does the ADC analysis from the histo-

gram data and is shown functionally in Fig. 3. It is written

in C and runs on a UNIX system.

The program first gets command line arguments to set

options such as data type and output listings. The user

then enters the name of the binary file containing the

histogram. Next the offset voltage is computed and a

cumulative histogram is compiled. From this, the transition

levels are computed, leading to the nonlinearity calcula-

tions.

Once an ADC is characterized, the differential nonlin-

earities and integral nonlinearities can be written to ASCII

or binary files and plotted on a graphics terminal. A

statistics file contains information such as the input offset,

LSB size, and the maximum and minimum nonlinearities,

etc.

A. Algorithms for A /D Converter Error Computation

The offset voltage is found from the shift of the histo-

gram about the midpoint O V. If VO= O, the number of

codes above zero, NP, equals the number of codes below

zero, NH:

.2-1

Nn= ~ II[i] NP= ~ II[i]. (4.1)
,=1 i=*n–l+~
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COMPUTE DIFFERENTIAL
NONLINEARITY DN[, ]

WRITE DIFFERENTIAL AND INTEGRAL
NONLINEARITY FILES

Fig. 3. Flowchart forcode density analysis program which computcs the
ADC transitions from the histogram.

The probabilitypP that any randomly sampled voltage is

positive is the probability that it is in the range (O, A + VO)

and is found from (2.6) to be

{ [ 1}P,=+ Sin-’(l) -sin-’ ~ (4.2)

(4.3)

And the probability p. that a negative voltage is sampled is

Solving (4.3) and (4.4) for V&

VO=A~sin(pP– p.). (4.5)

An estimate of V& fiO can be obtained by replacing the

unknown population frequencies pP and p. by the ob-

served sample frequencies NP/N1 and N./N,:

Np – Nn
tio=A~sin

NP + N.
(4.6)

where NP and N. are the number of positive and negative

samples, respectively.

When the offset voltage is small relative to the sine

amplitude, this can be approximated

(4.7)

In computing the differential nonlinearity, substituting

(2.7) into (2.1) for P(i) is unfeasible and incorrect.

It is unfeasible since the amplitude of the sine wave A

must be known tith great precision because the differen-

tial nonlinearity calculation is a very strong function of A.

To see the accuracy and precision to which A must be

known, assume a perfect ADC. Now if A is thought to be

equal to full scale, a certain number of codes is expected in

bin [1] and bin [2”]. But if A is just A – 1/2 LSB, ap-

proximately 1/2 as many codes will be obtained and the

differential nonlinearity will be – 1/2 bit in these two bins.

When too few codes go into these two bins, other bins get

the extra codes, resulting in excess positive differential

nonlinearity.

Vr,f, the full-scale voltage reference, is needed, but being

a dc quantity, it can be measured with a DVM to sufficient

precision. The term A, however, is the peak voltage with a

dc offset, not an rms voltage, and is measured less accu-

rately with a DVM than a dc voltage. Most DVM’S n[lea-

sure ac quantities at 60 Hz and do not have the bandwidth

to measure A at a few kilohertz.

The second consideration is due to the nonlinearity of

the sine wave. Twice as many codes are not expected from

a bin that is twice as wide as an ideal bin (i.e., 1 LSB

differential nonlinearity). As the bins get narrower with a

higher precision converter, the density can be linearized,

but tys is an approximation.
The statistically correct method to measure the nonlin-

earities is to estimate the transitions from the data. Then

the differential nonlinearity is the difference between ad-

jacent transition levels minus 1 LSB. The integral nonlin-

earity is the difference between the estimated transition

level and the ideal transition level.

In (2.6) and (2.3), P(V~, V~) is replaced by the measured

frequency of occurrence H/Nt using the “frequency sub-

stitution principle”
.

and then solved for V~, wtich is an

estimate of V6.

In solving (2.6), the offset VOcan be eliminated since it

only shifts fib and V.. It does not affect the integral or

differential ~nonlinearity. Thus, the simpler (2.3) can be

solved for Vb. Taking the cosine of both sides of (2.3) and

using the following identities yields (4.10):

cos(a–/3) =cos(a)cos(/3)+ sin(a) sin(fi)

((4.8)

v @=p(1cos sin–l— =

fi’-(2@s(%i~b A

(4.9)

-A2(1-c0s2(H+v“410)
The quadratic equation (4.10) can be solved for fib. In the

solution, the positive square root term is used so that lfi~ is

greater than Va:

fib=vacos(y)+sin(y)lq. (!,J1)

This gives ~~ in terms of’ V.. In general,

fi=~_lcOs(*)+sin(*)i~

(4.12)
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Rather than a recursive formulation that is subject to

cumulative errors, ~ can be computed directly by using

the boundary condition V. = – A and using a cumulative

ljstogram C17(i ) of i bins instead of the ith histogram bin

H(i):

()mCH( i )
~=–Aces ~

t
(4.13)

A is not known, but being a linear factor, all transitions ~

can be normalized to A so that the full range of transitions

is +1.

To estimate the integral nonlinearity with the same

precision as the differential nonlinearity, many more sam-

ples and a much longer testing time are required. Thus,

drifts in the ADC voltage reference and the sine wave

oscillator’s amplitude and offset voltage can give erroneous

results. The FFT test is not sensitive to these problems

since very few samples are needed.

V. FFT INTEGRAL NONLINEARITY TEST

The discrete Fourier transform computed with a fast

Fourier transform algorithm can be used to measure the

nonlinearity of the ADC transfer function. The setup is as

before, but this time the data taken are not put in a

histogram. They are just stored in the sequence taken, sent

to a UNIX file, and then Fourier transformed.

The spectrum of the output will contain the input sine

wave, quantization error, and any harmonic distortion

caused by integral nonlinearity. The theoretical signal-to-

noise ratio is (6rI + 1.8) dB [4]. If the harmonic distortion is
more than 6n dB below the fundamental amplitude, the

error caused by integral nonlinearity can be concluded to

be less than 1 bit and therefore negligible.

The input frequency must be chosen so that harmonics

aliased into the baseband do not add to the fundamental.

The raw data from the ADC were modified by a “Harming

window” [5] to reduce the effects of truncating a sine wave

before a FFT. If the sampled data contairi an integral

number of periods of the input sine wave, the FFT will be

accurate. If the samples contain a fraction of a sine wave

period, the FFT will have gross distortions.

VI. TESTING FOR SPECIFIC APPLICATIONS

The specific application and nonlinearity errors of the

ADC should dictate the type of test to be performed. If the

application is for instrumentation, the quantity to be tested

is differential and integral nonlinearity so the code density

test is appropriate. If the use is in a digital audio system,

the appropriate tests would be in the frequency domain.

The FFT would be interpreted for harmonic distortion,

frequency response, S/N, etc.

The code density test is most sensitive to differential

nonlinearity errors, while an FFT test is most sensitive to

integral nonlinearity errors. Thus, the type of error to be
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Fig. 4. 8 bit, CMOS, remstor-string ADC, (a) Differential nonlineanty.
(b) Integral nonlinearity.

measured, rather than the application of the

be a factor in determining which test to use.

ADC, would

VII. CODE DENSITY TEST RESULTS

Three different designs of A/D converters were tested.

All were of the successive approximation variety. The first

was an 8 bit, resistor-string, CMOS converter, the second a

12 bit, bipolar, laser-trimmed, R-2R ladder converter, and

the third a 15 bit, CMOS, self-calibrating ADC with a

capacitor firay and resistor string.

For the 8 bit, resistor-string ADC, 268000 samples

corresponding to a 0.1 bit precision with 99 percent confi-

dence were taken. The differential nonlinearities and in-

tegral nonlinearities are shown in Fig. 4(a) and (b). There

are no differential nonlinearities greater than 1/4 bit; thus,

the integral nonlinearity is smooth and is never greater

than 2 bits. Manufacturers will often pass a best-fit-line
through this integral nonlinearity plot and claim + 1 LSB

integral nonlinearity with a gain and offset error. There is

no pattern to the errors that are from random mismatches

in the resistor string.

With only 5000 samples, the integral nonlinearity is no

longer smooth, but has the same shape and approximately

the same worst case error. However, the differential non-

linearity has a large degree of uncertainty, but the major

nonlinearities are visible.

For the 12 bit, R-2R ADC, the major carries are clearly

visible where the integral nonlinearity jumps 1 bit. The

differential nonlinearity in Fig. 5(a) shows large spikes that
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Fig. 6. Differential nonlinearity for 15 bit, CMOS, self-calibrating ADC
with capacitor array main DAC and resistor-string sub-DAC.

correspond to resistor mismatches. The other errors appear

periodic since the resistors with untrimmed, random errors

are used repeatedly over the range of the ADC. This is in

contrast to the resistor string where each resistor is used

once; hence, the errors are not periodic.

The 15 bit self-calibrating ADC with capacitor-array

main DAC and resistor-string sub-DAC differential non-

linearity plot is shown in Fig. 6.

A. FFT Test Results

The 12 bit R-2R ADC was used for the FFT test. Fig.

7(a) is a 4096-point FFT of a 495 Hz sine wave sampled at

8012 Hz. The harmonics are clearly visible 72 dB below the

fundamental, corresponding to 12 bit integral linearity.

This is within the 1 bit integral nonlinearity specified for

825
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Fig. 7. FFT spectrum for a 12 bit ADC sampling a 495 Hz sine wave.
(a) 4096-point FFT. (b) 1024-point FFT.

F\g. 8. Classical method of ADC testing. The integrator is forced (.o the
transition voltage and measured by the DVM.

the converter. In Fig. 7(b), 1024 samples are used. Since

each sample in the time domain corresponds to one point

in the frequency domain, the features are less clear. The

decreasing number of samples again increases the noise

level, as would a less precise A/D converter.

VIII. COMPARISON TO CLASSICAL TESTING

A classical ADC test is shown conceptually in Fig. 8 [6].

The integrator is driven to each transition and held at that

voltage while a computer-controlled DVM measures the

transition point. This is an extremely slow process since the

integrator loop must settle and then the DVM takes a

reading.

The first drawback to this testis that the accuracy of the

test depends on the DVM. More important is that this is a

static test of the ADC. The AQC is measuring a dc voltage,
not a high-frequency input. Most converters are tested this

way, but they claim the same characteristics and accuracy

for a maximum conversion rate dynamic input. There is no

measurement of dynamic errors. With the histogram and

FFT tests, the input can be as high a frequency as desired

to test for frequency-dependent errors.
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Testing a high-precision converter by the classical method

can be in error due to noise at the ADC input. But the

histogram test being statistical and sampling each bin

many times rather than once will average out any random

noise.

The precision of the classical testis limited by the DVM.

But in the histogram test, taking more samples increases

the precision. Extending the classical test to higher preci-

sion converters is again limited by DVM precision and

accuracy. With a histogram test, the input source must be

known to more precision than the ADC and can be easily

verified with a spectrum analyzer. Lastly, the minicom-

puter must have enough memory to store 2“ histogram

bins.

The integrator loop takes approximately 5 s to measure

each transition or 5 2/3 h to completely test a 12 bit ADC.

If a precision DAC is used instead of an integrator, the

speed should increase by a factor of 10 to about 30 tin,

which is still very slow.

With a histogram of 1000 counts per bin, for 99 percent

confidence with 0.1 bit precision, it will take 9 rnin to take

the data at a 8 kHz input rate. For production testing, the

confidence level and precision can be reduced to 95 percent

and 0.25 bit precision, decreasing the number of samples

needed and the testing time by a factor of 10. Fig. 9 shows

the tradeoffs among confidence level, precision, and the
number of samples required. The testing time can also be

reduced by taking the data faster since the rate is currently

limited by the minicomputer, not the ADC under test.

IX. D/A CONVERTER TESTING

To test D/A converters, a dual of the histogram test is

sought. This would be a number generator input to the

DAC and a device quantizing the analog output and

counting the number of occurrences of each output to get a

histogram. But the quantization is done by an ADC, and

has the same disadvantages as using a DAC to test the

ADC’S, that is, speed, precision, and noise.

However, a dual of the FFT test is an analog spectrum

analysis. Input a digital since wave to the DAC and look at

the spectrum. Ideally, there will be the fundamental, quan-

tization noise, and harmonic distortion. The level of

harmonic distortion is related to the nonlinearity of the

DAC transfer curve just as integral nonlinearity in the

ADC was deduced from a FFT.

X. SUMMARY

The code density test produces a histogram of the digital

output codes of an ADC sampling a known input. The

code density is used to compute the voltage transition

levels that characterize the ADC. This test is completely

general in that it tests high-precision and high-speed con-

verters. It is superior to a traditional” transition test” since

it is done at full speed with a dynamic input and the results

do not depend on the accuracy of a DAC or DVM. FFT

tests are performed to measure the integral nonlinearity,

distortion, and signal-to-noise ratio. Unlike classical test

methods, the methods proposed here also test the” sample-

and-hold” and can measure the internal noise of the ADC.

D/A converters can be tested by a dual of the FFT test,

using a digital sine wave input and an analog spectrum

analyzer.

APPENDIX

The uncertainty in the differential nonlinearity is the

uncertainty in the width of the bin ~+ ~– ~. From (4.13),

(Al)

((
=–A COS

7r(CH(i)+H(i))

N, )

( )}_C05 %’Czl(i)
N, “

(A2)

CH(i ) is the total number of codes in bins 1 through i and

ACH(i) = H(i + 1) is the number of codes in bin [i + 1].

Now define F(X) = cos TX/Nt:

q+l –~=– A[F(CH(i)+ ACH(i))-F(CH(i))]

(A3)

= -A[F(CH(i)+ ACH(i))-F(CH(i))]

ACH( i )

.ACH( i ) (A4)

~_ AdF(CH(Z))AcH(i)

dCH( i )
(A5)

()_ AmACH(i) . rCH(i)—
N,

sm
Nt “

(A6)

ACH(i) and CH(i) are random variables, but we can
assume that CH( i ) is known since it only affects the

integral nonlinearity, and this confidence interval is for the

differentail nonlinearity. Thus, the random variable is
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ACH(Z) and ~+ ~– ~ is of the form spending to a zero input or bin [2” – 1] is used.

(i

7i-CH( i ) ~
Y= A~sin ~ . (A7) J [~]-sin-l[-~])p(2n-1) = !_ sin-l

t t

Let the random variable ACH(i) = X and be distributed
2

[1
vref—— —sin–l — (A14)

with mean pX and standard deviation u, with the following
v A2* “

notation: X - (pX, OX). If Y= ax+ b, then Y - (up. + For V,ef = A, this reduces to (2/n), sin’1 [1/2”]. FoIIr any

b, aux). reasonable value of n, the sin – 1 argument is small, and

sin ‘1(x) = x so p = P(2”-1) =1/7i-2”-l. The condition is

~=a~x+b=(A:sin(W’)))px ‘A’) ‘hat

()

z:,271’2” - ‘
ITCH(i)

uY=auX=AZ sin (A9) N,> (A15)
N, N, 0’ “ b’ ‘

Now the mean pX and standard deviation OXof the random

variable ACH( i ) are needed to find p ~ and UY.

Any given sample with either go in bin [i] or it will not

go in bin [i]. This is a two outcome, or Bernoulli trial, wi{h [11

binomial distribution characterized by mean np(l – p) = np [21

since p << 1 and standard deviation @. The total

number of samples taken is n = Nt, and p is the probabil- [31

ity that a sample goes in a bin. Thus, ACH( i ) - B( rtp,

G).
[4]

From (A8) and (A9),
[51

(A1O) ‘6][1TCH( i )
‘ py = pAm sin

N,

-“[ 1TCH( i )

““fiAl?ln y “

(All)

If the number of samples is large, the binomial distribution

can be approximated by a Normal or Gaussian distribu-

tion and

can be found for any choice of a. Z.l’ is the number of

standard deviations which can be found from a tabulated

listing of the standard normal distribution for any chosen

alpha. Thus, the measured bit width p y, which is nominally

1 bit, lies within its true value with tolerance Z@y with

100(1 – a) percent confidence. Thus, ~@Y < ~PY. PPY is

the tolerance to which the bit width is known. Substituting
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(A1O) and (All) for o, and p,,
David A. Hodges (S’59-M65-SM71- F’77), for a photograph and biogra-

Z:,2
phy, see this issue, p. 819.

NJ32 ‘p”
(A13)

p is the probability of a sample going in a bin and is a Hae%eung Lee (S’84), for a photograph and biography, see this issue, p.
function of the bin [i], so the minimum p, P(2n -1) corre- 819.


